Shopping Cart

0 item(s) - $ 0.00 CDN
Your shopping cart is empty!
Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations
Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations

* Book Type:

Publisher: Firefly Books

Author Statement: by Dr. Richard Elwes
Audience: Trade
Specs: 200 black-and-white illustrations, index
Pages: 416
Trim Size: 7 1/2" X 10" X 1 1/8"
Language code 1: eng
Publication Date: 20140911
Copyright Year: 2014
Price: Select Below


Please Note: Only online orders placed from within Canada or the USA are accepted using the Add to Cart button

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations

A comprehensive study of math principles in one volume for the general reader.

A comprehensive study of math principles in one volume for the general reader.

This practical reference provides clear and concise explanations of the most fascinating fundamental mathematical concepts. Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.

The book covers all of the fundamental mathematical disciplines:

  • Geometry
  • Numbers
  • Analysis
  • Logic
  • Algebra
  • Probability and statistics
  • Applied mathematics
  • Discrete mathematics
  • Games and recreational mathematics
  • Philosophy and metamathematics

Expert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.

Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.


Dr. Richard Elwes is a writer, lecturer and researcher in mathematics. He contributes to New Scientist and Plus Magazine and has published numerous scholarly research papers.

First Chapter:


THE FIRST MATHEMATICIAN KNOWN BY NAME is Ahmes, an Egyptian scribe who around 1650 BC copied out and studied a list of complex mathematical problems he called the 'ancient writings'. Today, Ahmes' text is known as the Rhind papyrus. From this, and older stone tablets, we know that the scholars of ancient Egypt and Babylon had sophisticated numerical notation and a taste for challenging problems in algebra, geometry and number theory.

The study of mathematics, then, is as ancient as civilization; but it also represents the modernity of today's world. In the millennia since Ahmes' work, we have seen scientific and technological progress of which he could not have dreamt. Central to this advance has been the march of mathematics, which has contributed the basic language used in all scientific contexts. Probably mathematics' most fundamental contribution has been in the sphere of physics. Galileo's revolutionary insight in the early 17th century that the universe might yield to a purely mathematical description set the direction towards the world-changing theories of quantum mechanics and relativity.

This reliance on mathematics is not confined to the physical sciences. The social sciences depend on techniques of probability and statistics to validate their theories, as indeed do the worlds of business and government. More recently, with the emergence of information technology, mathematics became entangled in another love-affair, with computer science. This too has had a profound impact on our world.

As its influence has broadened, the subject of mathematics itself has grown at a startling rate. One of history's greatest mathematicians, Henri Poincare, was described by Eric Temple Bell as 'the last universalist', the final person to have complete mastery of every mathematical discipline that existed during his lifetime. He died in 1912. Today, no-one can claim to have mastered the whole of topology, let alone geometry or logic, and these are just a fraction of the whole of mathematics.

Poincare lived through a turbulent period in the history of mathematics. Old ideas had been blown away, and new seeds planted which flourished during the 20th century. The result is that the mathematical world we know today is rich and complex in ways that even the greatest visionaries of the past could not have imagined. My aim in this book is to give an overview of this world and how it came to be. I might have tried to sketch a low-resolution map of the entire mathematical landscape, but this would be neither useful nor entertaining. Instead, I have presented 1001 short 'postcards' from interesting landmarks around the mathematical world that nonetheless give a feel for the bigger picture of mathematics.

In the scheme of things, 1001 is a very small number (see the frivolous theorem of arithmetic). My challenge has been to select the real highlights: the truly great theorems, the outstanding open problems and the central ideas. I have also sought to represent the surprises and quirks that make the subject truly fascinating.

This book is organized thematically, on three levels. It is divided into ten chapters, each covering a broad subject, beginning with 'Numbers'. Each chapter is subdivided into sections, which are more narrowly focused on a single topic, such as 'Prime numbers'. Each section comprises a series of individual entries, such as the one on the Riemann hypothesis.

How you should read Mathematics 1001 depends on what you want from it. If you are interested in prime numbers you can read through that section. If you want a quick explanation of the Riemann hypothesis, you can jump straight there; but, because 'a quick explanation of the Riemann hypothesis' is an impossibility, you will then need to rewind a little, to take in the preceding few entries where the necessary prerequisites are laid out. Alternatively you can dip in and out, perhaps finding a new story by following the bold cross-references to different entries in the book.

Who is this book aimed at? The answer is anyone with a curiosity about mathematics, from the novice to the informed student or enthusiast. Whatever the reader's current knowledge I'm sure that there will be material here to enlighten and engage. Some parts of the book undoubtedly cover highly complex subjects. That is the nature of the subject; shying away from it would defeat the purpose. However, the book is structured so that the relevant basic concepts precede the complex ones, giving a foundation for understanding. My job in writing has been to discuss all ideas, from the basic to the most abstract, in as direct and focused a way as possible. I have done my best, and have certainly relished the challenge. Now I can only hope that you will enjoy it too.

Richard Okura Elwes





    The Basics
    Number Systems
    Rational Numbers
    Factors and Multiples
    Representation of Numbers
    Transcendental Numbers
    Ruler and Compass
    Diophantine Equations
    Prime Numbers


    Euclidean Geometry
    Polygons and Polyhedra
    Curves and Surfaces
    Polar Coordinates
    Discrete Geometry
    Differential Geometry
    Knot Theory
    Non-Euclidean Geometry
    Algebraic Topology
    Algebraic Geometry
    Diophantine Geometry


    Letters and Numbers
    Vectors and Matrices
    Group Theory
    Abstract Algebra

Discrete Mathematics

    Graph Theory
    Ramsey Theory


    Differential Calculus
    Integral Calculus
    Complex Analysis
    Power Series
    Dynamics Systems
    Differential Equations
    Fourier Analysis


    Basic logic
    The Science of Deduction
    Set Theory
    Hilbert's program
    Complexity theory
    Computability theory
    Model Theory
    Uncertainty and Paradoxes


    What Mathematicians Do
    Mathematics and Technology
    Philosophies and Mathematics

Probability & Statistics

    Probability Distributions
    Stochastic Processes

Mathematical Physics

    Newtonian Mechanics
    Fields and Flows
    Special Relativity
    Quantum Mechanics
    Quantum Field Theory

Games and Recreation

    Game Theory
    Puzzles and Perplexities


 .  .